当前位置: 首页 > 师资队伍 > 教师 > 教授(含外聘) > 正文
戴振学

发布日期:2015-09-23 作者: 编辑: 点击:

undefined

简介

戴振学,1984年毕业于长春地质学院水工系,2000年在西班牙拉科鲁尼亚大学获土木工程博士学位。2001至2017年在美国莱特州立大学和Los Alamos国家实验室从事污染物迁移模拟与修复、核废料储藏、放射性核素反应运移的分析与风险评估方面的研究工作,历任助理科学家到高级科学家,2010被评为美国地质学会会士(Fellow),2017年全职回国在吉林大学建设工程学院工作。

现主持国家重点研发计划项目一项、国家自然科学基金一项、核素运移的不确定性分析和安全评估课题2个、吉林大学高层次创新团队项目一项,所带领的团队(3位教师2名博后)在过去的4年获得国家自然科学基金6项和科技服务项目10多项。回国前曾参加或主持了美国国家基金“污染物在多尺度非均质岩层中运移的地质统计分析”、美国核管理委员会项目“污染物运移的概念模型和观测网优化设计”、美国能源部科学基金“污染物反应运移的三维数值模拟”等多项污染模拟和环境保护相关的研究课题。熟悉并掌握国内外污染智能模拟与预警领域最新动态,在污染物运移的不确定性分析及风险评估方面有着坚实的专业基础和丰富的科研经历。在多个环境、地学与水文学主流期刊上发表关于污染物运移的尺度效应研究、模型与参数的不确定性分析等论文100 多篇,并自主研发了8套用于污染物迁移模拟与风险评估专业软件(如INVERSE-CORE、GEOST3等)。主要成果曾获美国能源部国家实验室杰出创新和技术转让奖。



研究领域

教学科研领域:

1.水土污染智能监测、模拟、预警及监测网的优化设计;

2.核废料储藏和放射性核素反应运移的分析;

3.基于地质统计与随机模拟技术的非均质含水层的特征化(综合利用地质,水文,地球化学和地球物理资料来建立非均质含水层的结构模型);

4.水流与化学反应参数在多尺度非均质孔隙与裂隙介质中的尺度效应的分析;

5.水土污染有关的环境质量模拟与风险评估;

6. CO2储藏与强化采油的数值模拟与不确定性分析;

7.矿井涌水量评价与煤矿水害防治;

8.地下水反应溶质运移参数识别与逆问题研究.

1.AI based monitoring, modeling, and early-warning of soil/water contamination;

2.Radionuclide transport analysis and repository science;

3.Multiscale aquifer characterization with geological, geochemical, geophysical data;

4.Upscaling flow and reactive transport parameters in porous and fractured rocks;

5.Environmental quality evaluation and risk assessment;

6.Uncertainty quantification and optimization for CO2-Enhanced Oil Recovery (EOR);

7.Water inflow evaluation and inrush protection in coal mines; and

8.Inverse modeling of reactive transport in variably saturated heterogeneous media.

研究项目:

1.国家重点研发计划项目:“场地污染实时响应监测预测预警技术与装备研究”项目负责, 2018-2022.

2.国家重点研发计划课题:“场地土壤污染智能模拟与预测技术研究”, 课题负责, 2018-2022.

3.国家自然科学基金面上项目:“地下水溶质运移模型的尺度效应和不确定性分析”, 项目负责, 2018-2021.

4.吉林大学高层次创新团队项目:“水土污染智能模拟与预警技术研究”,项目负责,2019-2022.

5.国家十四五预研项目课题1:“核素在非均质含水层介质中反应运移快速模拟”,课题负责,2020-2021.

6.国家十四五预研项目课题2:“核素在基岩裂隙及管道介质中反应运移模拟”,课题负责,2020-2021.

7.省级科研项目:“数值模拟应用于污染地下水修复设计的研究”,项目负责,2019-2021.

8.科技服务项目:“底板注浆改造浆液运移规律与注浆工程参数优化”,项目负责,2017-2020.

9.科技服务项目:“急倾斜煤层开采条件下矿井涌水量预测方法研究”,项目负责,2018-2022.

10.科技服务项目:“河床沉积物渗透性演化的水动力驱动效应研究”, 项目负责,2017-2020.

主要论文

代表性论著Peer-Reviewed Publications (IF=Impact Factor, * = 通讯作者, 区为中科院分区)


[1] Dai, Z.,  L. Xu, T. Xiao*, B. McPherson, X. Zhang*, L. Zheng, S. Dong, Z. Yang,  R. Soltanian, C. Yang, W. Ampomah, W. Jia, S. Yin, T. Xu, D. Bacon, H.  Viswanathan, Reactive chemical transport simulations of geologic carbon  sequestration: Methods and applications, Earth-Science Reviews, 208: 103265, 2020. (1区, IF 9.72)

[2] Dai, Z.,  C Zhan, MR Soltanian, RW Ritzi, X Zhang*, How does resolution of  sedimentary architecture data affect plume dispersion in multiscale and  hierarchical systems? J. of Hydrology 582: 124516, 2020. (1, IF 4.5

[3] Zhang, X., L. Qi, W. Li, B. X Hu*, Z. Dai*, Bacterial community variations with salinity in the saltwater-intruded estuarine aquifer, Science of The Total Environment, 755: 142423, 2020. (1, IF 6.55

[4] Yu, Q., Z Xiong, C Du, Z Dai*, MR Soltanian, M Soltanian, S Yin, W Liu, C Liu, C Wang, Z Song, Identification of rock pore structures and permeabilities using electron microscopy experiments and deep learning interpretations, Fuel 268:117416, 2020. (1, IF 5.58)

[5]Dai, Z., C Zhan, MR Soltanian, RW Ritzi, X Zhang*, Identifying spatial correlation structure of multimodal permeability in hierarchical media with Markov chain approach, J. of Hydrology 568, 703-715, 2019. (1, IF 4.5)

[6]Dai, Z., Y. Zhang, J. Bielicki, M.A. Amooie, M. Zhang, C. Yang, Y. Zou, W. Ampomah, T. Xiao, W. Jia, R. Middleton, W. Zhang, Y. Sun*, J. Moortgat, M. Soltanian*,P.H. Stauffer, Heterogeneity-assisted carbon dioxide storage in marine sediments, Applied Energy, 225, 876-883, 2018. (1, IF 8.85)

[7] Wolfsberg, A., Z. Dai*, L. Zhu and P. Reimus, T. Xiao, D. Ware, Colloid-facilitated Plutonium Transport in Fractured Tuffaceous Rock, Environmental Science & Technology, 51 (10), 5582 –5590, 2017. (1, IF 7.86)

[8] Dai, Z*., H. Viswanathan, R. Middleton, F. Pan, W. Ampomah, C. Yang, W. Jia, S. Lee, B. McPherson, R. Balch, R. Grigg, and M. White, CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites, Environmental Science & Technology, 50 (14), 7546−7554,2016. (1, IF 7.86)

[9]Shang, H., W. Wang*, Z. Dai*, L. Duan, Y. Zhao, J. Zhang, An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountain, China, J. of Hydrology, 543, 386-394, 2016. (1, IF 4.5)

[10] Dai, Z.*, P. Stauffer, J. Carey, R. Middleton, Z. Lu, J. Jacobs, L. Spangle, K. Hnottavange-Telleen, Pre-site characterization risk analysis for commercial-scale carbon sequestration, Environmental Science & Technology, 48 (7), 3908–3915, 2014. (11, IF 7.86)

[11] Dai, Z.*, R. Middleton, H. Viswanathan, J. Fessenden-Rahn, J. Bauman, R. Pawar, S. Lee and B. McPherson, An integrated framework for optimizing CO2 sequestration and enhanced oil recovery, Environmental Science & Technology Letters, 1:49-54, 2014. (1, IF 7.68)

[12] Dai, Z.*, A. Wolfsberg, P. Reimus, H. Deng, E. Kwicklis, M. Ding, D. Ware and M. Ye, Identification of sorption processes and parameters for radionuclide transport in fractured rock, J. of Hydrol., v 414–415, p220–230, 2012. (1, IF 4.5

[13] Yang, C., Z. Dai, K. Romanak, S. Hovorka, R. Trevino, Inverse Modeling of Water-Rock-CO2 Batch Experiments: Implications for Potential Impacts on Groundwater Resources at Carbon Sequestration Sites, Environmental Science & Technology, 48 (5), 2798–2806, 2014. (1, IF 7.86

[14] Deng, H., Z. Dai*, A. Wolfsberg, Z. Lu, M. Ye and P. Reimus, Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies, Water Resources Research, 46, W06501, 2010. (1, IF 4.31)

[15]Lu, Z., A. Wolfsberg, Z. Dai, and C. Zheng, Characteristics and controlling factors of dispersion in bounded, randomly heterogeneous porous media, Water Resources Research, 46, W12508, 2010. (1, IF 4.31)

[16]Dai, Z.*, A. Wolfsberg, Z. Lu, and H. Deng, Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock, Geophysical Research Letters, 36, L01403, 2009. (1, IF 4.50)

[17] Harp D., Z. Dai*, A. Wolfsberg, J. Vrugt, B. Robinson, V. Vesselinov, Aquifer structure identification using stochastic inversion, Geophysical Research Letters, 35, L08404, 2008. (1, IF 4.50)

[18] Dai, Z.*, A. Wolfsberg, Z. Lu, and P. Reimus, Upscaling matrix diffusion coefficients for heterogeneous fractured rocks, Geophysical Research Letters, 34, L07408, 2007. (1, IF 4.50)

[19]Dai, Z.*, A. Wolfsberg, Z. Lu, and R. Ritzi, Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix, Geophysical Research Letters, 34, L20406, 2007. (1, IF 4.50)

[20] Dai, Z.* and J. Samper, Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems, J. of Hydrology, 327, 447-461, 2006. (1, IF 4.5)

[21] Dai, Z., R. Ritzi, and D. Dominic, Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop-analog studies, Water Resour. Res., 41, W07032, 2005. (1, IF 4.31)

[22] Dai, Z.* and J. Samper, Inverse problem of multicomponent reactive chemical transport in porous media: Formulation and applications, Water Resour. Res. 40, W074071-W0740718, 2004. (1, IF 4.31

[23] Dai, Z.*, R. Ritzi, C. Huang, D. Dominic, and Y. Rubin, Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales, J. of Hydrology, 294, 1-3, 68-86, 2004. (1, IF 4.5

[24]Ritzi, R., Z. Dai, D. Dominic, and Y. Rubin, Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture, Water Resour. Res., 40, 2004. (1, IF 4.31)

[25]Deng, H., Dai, Z., A. Wolfsberg, Z. Lu and M. Ye, Upscaling sorption coefficient in hierarchical porous media with multimodal reactive mineral facies, Chemosphere, 91(3), 248–257, 2013. (22, IF 5.78)

[26]Dai, Z.*, E. Keating, C.W. Gable, D. Levitt, J. Heikoop, A. Simmons, Stepwise inversion of a groundwater flow model with multi-scale observation data, Hydrogeology Journal, 18: 607-624, 2010. (3, IF 2.64)

[27] Huang, C., Z. Dai, Modeling Groundwater in Multimodal Porous Media with Localized Decompositions, Mathematical Geosciences, 40:689-704, 2008. (3, IF 1.96)

[28] Dai, Z.*, J. Samper, and R. Ritzi, Identifying geochemical processes by inverse modeling of multicomponent reactive transport in Aquia aquifer, Geosphere, 2(4),  210-219, June, 2006. (3, IF 2.64)

[29]Ritzi, R. and Z. Dai, Introduction: Modeling ground-water flow and reactive transport in physically and chemically heterogeneous media, Geosphere, 2(2),  pp. 73, June, 2006. (3, IF 2.64)

[30] Dai, Z.*, E. Keating, D. Bacon, H. Viswanathan, R. Pawar, Probabilistic Evaluation for Shallow Groundwater Resources at a Potential Carbon Sequestration Site, Scientific Reports, 4: 4006, DOI: 10.1038/srep04006, 2014. (3, IF 4.0)

[31] Wang, W., Z. Dai*, Y. Zhao, J. Li, L. Duan, Z. Wang, L. Zhu, A quantitative analysis of hydraulic interaction processes in stream-aquifer systems, Scientific Reports, 6: 19876, 2016. (3, IF 4.0)

[32] Zhu, L., Z. Dai*, H. Gong, C. Gable, P. Teatini, Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans, Stochastic Environmental Research and Risk Assessment, 30(3), 1005-1016, 2016. (2, IF 2.25

[33] Wang, W., Z. Dai*, J. Li and L. Zhou, A hybrid Laplace transform finite analytic method for solving transport problems with large peclet and courant numbers, Computers & Geosciences, 49, 182-189, 2012. (2, IF 2.7

[34]Zhao, X., H. Deng, W. Wang, F. Han, C. Li, H. Zhang, Z. Dai*, Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau, Scientific Reports, 7, 3002, 2017. (3, IF 4.0)

[35]Xiao, T., Z. Dai*, H. Viswanathan, A. Hakala, M. Cather, W. Jia, Y. Zhang, B. McPherson, Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs, Scientific Reports, 7, 2763, 2017. (3, IF 4.0)

[36]Dai, Z.*, J. Samper, A. Wolfsberg, and D. Levitt, Identification of relative conductivity models for water flow and solute transport in unsaturated compacted bentonite, Physics and Chem. of the Earth, 33, S177-S185, 2008. (3, IF 1.96)

[37] Zhu, L., H. Gong, Z. Dai*, T. Xu, X. Su, X. Li, An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas, Environmental Earth Science, 74:5009–5021, 2015. (分区4, IF 1.9)

[38] Hemmati-Sarapardeh, A.,MN Amar, MR Soltanian, Z Dai, X Zhang*, Modeling CO2 Solubility in Water at Ultra High Pressure and Temperature Conditions, Energy & Fuels, 2020, (3, IF 3.0)

[39]You, J, W Ampomah, Q Sun, EJ Kutsienyo, RS Balch, Z Dai, ME Cather, X Zhang, Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project, J. of Cleaner Production 260:120866, 2020, (1, IF 6.4)

[40] Zhu, L., A Franceschini, H Gong, M Ferronato, Z Dai, Y Ke, Y Pan, X Li, R Wang, P Teatini, 3D facies and geomechanical modelling of land subsidence in the Chaobai plain, Beijing, Water Resour. Res., 56(3), 2020. (1, IF 4.31)

[41]Sun, Q, W. Ampomah, E J Kutsienyo, M Appold, B Adu-Gyamfi, Z. Dai, R. Soltanian, Assessment of CO2 trapping mechanisms in partially depleted oil-bearing sands, Fuel 278: 118356, 2020. (1, IF 5.58)

[42] Ampomah, W., R.S. Balch, D. Rose-Coss, R. Will, M. Cather, Z. Dai, M.R. Soltanian, Optimum Design of CO2 Storage and Oil Recovery under Geological Uncertainty, Applied Energy, 195, 80-92, 2017. (1, IF 8.85

[43] Zou, Y., C. Yang, D. Wu, C. Yan, M. Zeng, Y. Lan, Z. Dai, Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China, Applied Energy, 180, 185–195, 2016. (1, IF 8.85

[44]Zhu, L., H. Gong, Z. Dai, G. Guo, and P. Teatini, Modelling 3D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions, Hydrology and Earth System Sciences, 21, 721-733, 2017. (1, IF5.15)

[45]De Silva, GPD, PG Ranjith, MSA Perera, Z. Dai, SQ Yang, An experimental evaluation of unique CO2 flow behavior in loosely held fine particles rich sandstone under deep reservoir conditions and influencing factors, Energy 119, 121-137, 2017. (1, IF 5.5)

[46]Zhang, X., J. Chen, B. X Hu, Y. Yu, J. So, J. Zhang, Z. Dai, S. Yin, R. Soltanian, W. Ren, Application of risk assessment in determination of soil remediation targets, Stochastic Environmental Research and Risk Assessment, 34(10), 1659-1673,2020(2, IF 2.25)

[47] Dong, S., L. Xu, Z. Dai, Q. Yu, S. Yin, X. Zhang, C. Zhang, X. Zang, X. Zhou, Z. Zhang, A Novel Fractal Model for Estimating Permeability in Low-Permeable Sandstone Reservoirs, Fractals-CGPSNS. 28(8): 2040005, 2020. (2, IF 4.54)

[48] Xiao, T., B McPherson*, R. Esser, W. Jia, Z. Dai, S Chu, F Pan, H Viswanathan, Chemical Impacts of Potential CO2 and Brine Leakage on Groundwater Quality with Quantitative Risk Assessment: A Case Study of the Farnsworth Unit, Energies, 993550, 2020, (3, IF 2.7)

[49]Zhang, X., F Dong, H Dai, BX Hu, G Qin, D Li, X Lv, Z Dai, MR Soltanian, Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifer, Hydrogeology J., 2020. (3, IF2.4)

[50] Wang, S, J Tang, Z Li, Y Liu, Z Zhou, J Wang, Y Qu, Z Dai, Carbon Mineralization under Different Saline—Alkali Stress Conditions in Paddy Fields of Northeast China, Sustainability, 12(7):2921, 2020, (4, IF2.6)

[51]Yu, Q., Z Dai*, Z Zhang, MR Soltanian, S Yin, Estimation of Sandstone Permeability with SEM Images Based on Fractal Theory, Transport in Porous Media 126 (3), 701-712, 2019. (3, IF 2.0)

[52] Samper, J., Z. Dai, J. Molinero, M. Garcia-Gutierrez, T. Missana, M. Mingarro, Interpretation of solute transport experiments in compacted Ca-bentonites using inverse modeling, Physics and Chem. of the Earth, 31, 640-648, 2006. (4, IF1.96

[53] Dong, S., B Xu, S Yin, Y. Han, X. Zhang, Z. Dai, Water Resources Utilization and Protection in the Coal Mining Area of Northern China, Scientific Reports, 9:1214, 2019. (3, IF 4.0

[54]Dai, Z., R. Ritzi, and D. Dominic, Estimating Parameters for Hierarchical Permeability Correlation Models, Aquifer Characterization, SEPM Publishers, No. 80, 41–54, 2004. (No IF)

[55]Proce, C., R. Ritzi, D. Dominic and Z. Dai,  Modeling multi-scale heterogeneity and aquifer interconnectivity, Ground Water, 42(5), 658-670, 2004. (3, IF 2.3)

[56]Dai, Z.*, H. Viswanathan, J. Fessenden-Rahn, R. Middleton, Uncertainty Quantification for CO2-Enhanced Oil Recovery, Energy Procedia, 63, 7685-7693, 2014.

[57] Dai, Z., H Viswanathan, T Xiao, A Hakala, C Lopano, G Guthrie, Reactive Transport Modeling of Geological Carbon Storage Associated With CO2 and Brine Leakage, Science of Carbon Storage in Deep Saline Formations, 67-87, 2019.

[58]Dai, Z. et al, Pre-test evaluation of data worth for a pump-test in a geologically complex multiple-scale subsurface system, WRR, in review, 2020.

[59]Song, X., X Chen, M Ye, Z Dai, G Hammond, JM Zachara, Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilationand Indicator Geostatistics With Level-Set Transformation, Water Resour. Res., 55(4), 2652-2671, 2019 (1, IF 4.31).

[60]Li, S., Wang, C.;,Zhang, X., Zou, L., Dai, Z.,  Classification and characterization of bound water in marine mucky silty clay, J. of Soil and Sediments, 19(5), 2509-2519, 2019. (3, IF 2.7).

[61] Samper, J., Zheng, L., Montenegro, L., Fernández, A., Rivas, P., Dai, Z., Forward and inverse modeling of multicomponent reactive transport in single and double porosity media, Advances in Understanding Engineered Clay Barriers, p493-503, 2005. (No IF)

[62]Dong, S., B Xu, S Yin, Y Han, X Zhang, Z Dai, Water Resources Utilization and Protection in the Coal Mining Area of Northern China, Scientific reports 9 (1), 1214, 2019. (3, IF 4.0

[63] Jia, W., McPherson, B., Pan, F., Dai, Z., Moodie, N. and Xiao, T., Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated with CO2-EOR. Water Resour. Res., 54, 1-18, 2018. (1, IF 4.31

[64] Jia, W., McPherson, B., Pan, F., Dai, Z., Xiao, T., Uncertainty quantification of CO2 storage using Bayesian model averaging and polynomial chaos expansion, Int. J. of Greenhouse Gas Control 71, 104–115, 2018. (2, IF 3.2)

[65]Lv, H., X Su, Y Wang, Z Dai, M Liu, Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site, Chemosphere 206, 293-301, 2018. (2, IF 5.78)

[66]Su, X., S Lu, W Yuan, NC Woo, Z Dai, W Dong, S Du, X Zhang, Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China, Hydrogeology Journal 26 (5), 1573-1589, 2018. (3, IF 2.64)

[67] Xu, B., M Ye, S Dong, Z Dai, Y Pei, A new model for simulating spring discharge recession and estimating effective porosity of karst aquifers, J. of Hydrol 562, 609-622, 2018. (1, IF 4.5)

[68] Soltanian, R., Z. Dai, C. Yang, M.A. Amooie, J. Moortgat, Multicomponent competitive monovalent cation exchange in hierarchical porous media with multimodal reactive mineral facies, Stochastic Environmental Research and Risk Assessment, 32(1), 295-310,2018. (2, IF 2.25)

[69]Bacon, D., N. Qafoku, Z. Dai, E. Keating, C. Brown, Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Int. J. of Greenhouse Gas Control, 44, 290-299, 2016. (2, IF3.)

[70]Soltanian, R., R. Ritzi, C. Huang, Z. Dai, Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. Time-dependent effective retardation factor, Water Resour. Res., 51(3), 1586-1600, 2015. (1, IF 4.31)

[71] Soltanian, R., R. Ritzi, C. Huang, Z. Dai, Relating reactive solute transport to hierarchical and multi-1 scale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance, Water Resour. Res., 51(3), 1601–1618, 2015. (1, IF 4.31)

[72]Zhu, L., Gong, H.L., Li, X., Wang, R., Chen, B., Dai, Z., Teatini P.  Land subsidence due to groundwater withdrawal in the northern Beijing plain, China, Engineering Geology, 193, 243–255, 2015. (1, IF 4.78

[73] Chen, L, Q Kang, Z Dai, HS Viswanathan, W Tao, Permeability prediction of shale matrix reconstructed using the elementary building block model, Fuel, 160, 346-356, 2015. (2, IF 5.78

[74] Soltanian, R., R. Ritzi, C. Huang, Z. Dai , H. Deng, A note on upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies, Transport in Porous Media, 108(2), 355-366, 2015. (3, IF 2.0)

[75]Soltanian, R., R. Ritzi, Z. Dai, C. Huang, D. Dominic, Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales, Stochastic Environmental Research and Risk Assessment, 29(3), 709-726, 2015. (33, IF 2.64)

[76]Soltanian, R., R. Ritzi, Z. Dai, C. Huang, Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach, Chemosphere, 122: 235-244, 2015. (2, IF 5.78)

[77] Carroll, S., E. Keating, K. Mansoor, Z. Dai, Y. Sun, W. Trainor-Guitton, C. Brown, D. Bacon, Key Factors for Determining Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs, Int. J. of Greenhouse Gas Control, 29, 153–168, 2014. (2, IF 3.64)

[78] Su, X., G. Cui, H. Wang, Z. Dai, N. Woo, W. Yuan,Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China)Environmental Geochemistry and Health1-12, 2018. (3, IF 3.64)

[79]Zhang, Y., J. Zeng, Z. Dai, H. Viswanathan, T. Xiao, Y. Ma, X. Feng, Experimental Investigation on oil Migration and Accumulation in Tight Sandstones, J. of Petroleum Science and Engineering 160, 267-275, 2018. (2, IF 2.65)

[80] Soltanian, R., Z DaiGeologic CO2 sequestration: progress and challenges, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 221–223, 2017. (4, IF 2.22)

[81] Soltanian, R., A Sun, Z Dai*Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, NevadaChemosphere, 179, 379-386, 2017. (2, IF 5.78)

[82]Xu, W.,  X. Su, Z. Dai, F. Yang, P. Zhu, Y. Huang, Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China, Hydrogeology Journal, 25 (7), 2015-2029, 2017. (3, IF 2.64

[83] Su, X., S. Lu, R. Gao, D. Su, W. Yuan, Z. Dai & E. N. Papavasilopoulos,Groundwater flow path determination during riverbank filtration affected by groundwater exploitation: a case study of Liao River, Northeast ChinaHydrological Sciences Journal62(14),  2331-2347, 2017. (3, IF 2.2

[84]Dai, Z.*, H. Viswanathan, T. Xiao, R. Middleton, F. Pan, W. Ampomah, C. Yang, Y. Zou, W. Jia, S. Lee, M. Cather, R. Balch, and B. McPherson, CO2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs,  Energy Procedia, 114,6957-6967, 2017.

[85]Dai, Z.*, Y. Zhang, P.H. Stauffer, T. Xiao, M. Zhang, W. Ampomah, C. Yang, Y. Zhou, M. Ding, M. Soltanian, J. Bielicki, R. Middleton, Injectivity Evaluation for Offshore CO2 Sequestration in Marine Sediments,  Energy Procedia, 114,2921-2932, 2017.

[86]Ampomah, W., R.S. Balch, R. Will, M. Cather, D. Gunda, Z. Dai, Co-optimization of CO2-EOR and Storage Processes under Geological Uncertainty,  Energy Procedia, 114,6928-6941, 2017.

[87]Ampomah, W., R.S. Balch, R.B. Grigg, M. White, N. Moodie, R.A. Will, M. Cather, Z. Dai, Performance Assessment of CO2-Enhanced Oil Recovery and Storage in the Morrow Reservoir, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 245-263, 2017. (4, IF 2.22)

[88] Yang, C., Jamison, K., Xue, L., Treviño, R., Hovorka, S., Dai, Z., Fredin, L., Quantitative assessment of soil CO2 concentration and stable carbon isotope for leakage detection at geological carbon sequestration sites, Greenhouse Gas Sci Technol., 7 (4), 680–691, 2017. (4, IF 1.7)

[89]Xiao, T., B. McPherson, A. Bordelon, H. Viswanathan, Z. Dai, H. Tian, R. Esser, W. Jia, W. Carey, T. Xu, Reactive transport modeling of CO2-cement-rock interactions at the well-caprock-reservoir interface, Int. J. of Greenhouse Gas Control, 63, 126-140, 2017. (2, IF 3.64)

[90] Xiao, T., Z. Dai, B McPherson, H Viswanathan, W Jia, Reactive transport modeling of arsenic mobilization in shallow groundwater: impacts of CO2 and brine leakage, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 339-350, 2017. (4, IF 2.22)

[91]Jia, W., B. McPherson, Z. Dai, T. Irons, T. Xiao, Evaluation of Pressure Management Strategies and Impact of Simplifications for A Post-EOR CO2 Storage Project, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 281-293, 2017. (4, IF 2.22)

[92]Amooie, M.A., M. R. Soltanian, F. Xiong, Z. Dai, J. Moortgat, Mixing and spreading of multiphase fluids in heterogeneous bimodal porous media, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 225-244, 2017. (4, IF 2.22

[93] Jia, W., F. Pan, Z. Dai, T. Xiao, B. McPherson, Probabilistic Analysis of CO2 Trapping Mechanisms in a Sandstone CO2-EOR Field in Northern Texas, USA, Energy Procedia, 114, 4321-4329, 2017.

[94]Ampomah, W., R.S. Balch, R.B. Grigg, B. McPherson, B. McPherson, R.A. Will, S. Lee, Z. Dai, F. Pan, Co-optimization of CO2-EOR and storage processes in mature oil reservoirs, Greenhouse Gas Sci Technol. 7 (1), 128-142, 2017. (4, IF 1.7)

[95]Soltanian, R., M.A. Amooie, Z. Dai, D. Cole, Y. Moortgat, Critical Dynamics of Gravito- Convective Mixing in Geological Carbon Sequestration, Scientific Reports, 6:35921 | DOI: 10.1038/srep35921, 2016. (3, IF 4.0)

[96]Ampomah, W., R.S. Balch, R.B. Grigg, R. Will, S.Y., Lee, Z. Dai, Performance of CO2-EOR and Storage Processes under Uncertainty, SPE-180084-MS, Society of Petroleum Engineering, 2016. (no IF)

[97] Pan, F., B. J. McPherson, Z. Dai, W. Jia, S. Lee, W. Ampomah, H. Viswanathan, R. Esser, Uncertainty Analysis of Carbon Sequestration in an Active CO2-EOR Field, Int. J. of Greenh. Gas Control, 51, 18-28, 2016. (分区2, IF 3.64)

[98] Keating, E.H., D.H. Bacon, S. Carroll, K. Mansoor, Y. Sun, L. Zheng, D. Harp, Z. Dai, Applicability of aquifer impact models to support decisions at CO2 sequestration sites, Int. J. Greenh. Gas Control, 52, 319-330, 2016. (2, IF 3.64)

[99]Keating, EH, Harp, DH, Dai, Z., Pawar RJ, Reduced Order Models for Assessing CO2 Impacts in Shallow Unconfined Aquifers, Int. J. of Greenhouse Gas Control, 46, 187-196, 2016. (2, IF 3.64)

[100] Ampomah, W.,  R.S. Balch, M. Cather, D. Rose-Coss, Z. Dai, J. Heath,T. Dewers, P. Mozley, Evaluation of CO2 Storage Mechanisms in CO2 Enhanced Oil Recovery Sites, Energy and Fuel, 30 (10), 8545–8555, 2016. (2, IF 3.1)

[101] Liu, G., Z. Dai, B Xing, M Wang, Y Meng, J Li, Application and prospect of bionic algorithm in groundwater model inversion, Hydrogeology & Engineering Geology 43 (1), 41-49, 2016.

[102] Keating, E., Z. Dai, D. Dempsey, R. Pawar, Effective detection of CO2 leakage: a comparison of groundwater sampling and pressure monitoring, Energy Procedia, 63, 4163-4171, 2014.

[103] Bacon, D.H., Z. Dai, L. Zheng, Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer, Energy Procedia, 63, 4684-4707, 2014.

[104] Viswanathan H., Z. Dai, C. Lopano, E. Keating, J. A. Hakala, G. D. Guthrieb, R. Pawar, The Impact of CO2 Sequestration on Shallow Groundwater, SIAM News, News Journal of the Society for Industrial and Applied Mathematics, v.45(8), p.12, October, 2012. (No IF)

[105]Viswanathan H., Z. Dai, C. Lopano, E. Keating, J. A. Hakala, K. G. Scheckel, L. Zheng, G. D. Guthrie, R. Pawar, Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico, Int. J. of Greenhouse Gas Control, 10, 199–214, 2012. (2, IF 3.64)

[106]Deng, H., P. Stauffer, Z. Dai, Z. Jiao, R. Surdam, Simulation of industrial-scale CO2 storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage, Int. J. of Greenhouse Gas Control, 10, 397–418, 2012. (2, IF 3.64)

[107] Samper, J, C Yang, L. Zheng, L. Montenegro, T. Xu, Z. Dai, G Zhang, C Lu & S Moreira, CORE2D V4: A code for water flow, heat and solute transport, geochemical reactions, and microbial processes, Groundwater Reactive Transport Models, F Zhang, G-T Yeh, C Parker & X Shi (Ed), Bentham Science Publishers, p 161-186, ISBN 978-1-60805-029-1, 2012.

[108] Dong S., Z. Dai and J. Li, The scale dependence of dispersivity in multi-faces heterogeneous sediments, J. of EARTH SCIENCE FRONTIERS, in Chinese, May, 2010. (No IF)

[109]Samper, J. , Fernández, A., Zheng, L., Montenegro, L., Rivas, P., Dai, Z., Forward and inverse modeling of multicomponent reactive transport in single and double porosity media, Developments in Water Science,v55, 805-816, 2004. (No IF)

[110] Dai, Z.*, R. Ritzi, D. Dominic and Y. Rubin, Estimating Spatial Correlation Structure for Permeability in Sediments with Hierarchical Organization, Groundwater Quality Modeling and Management Under Uncertainty, Ed. by S. Mishra, American Society of Civil Engineers, 83-100, 2003. (No IF)

[111] Ritzi, R., Z. Dai, D. Dominic, and Y. Rubin, Review of permeability in buried-valley aquifers: centimeter to kilometer scales, International Association of Hydrologic Sciences Redbook, Kovar, K. and Z. Hrkal eds. IAHS Publishers, No. 277, 409-418, 2002. (No IF).

[112] Garcia-Gutiérrez, M., T. Missana, M. Mingarro, J. Samper, Z. Dai and J. Molinero, Solute Transport Properties of Compacted Ca-bentonite Used in FEBEX Project, J. Contaminant Hydrology, 47, 127-137, 2001. (分区3, IF 2.65)

代表性论著Peer-Reviewed Publications Before 2000

[113] ZDai, Z. and J. Samper, Estimación Automática de Parámetros de Flujo No Saturado Mediante Ensayos de Infiltracón, IV Jornadas sobre Investigación en la Zona no Saturada del Suelo, Tenerife, ISBN 84-699-1258-5, p.175-180, 1999. (Spanish

[114] Dai, Z. and Li J., Numerical simulation and optimal management of groundwater flow of multi-aquifer systems, MODELING IN GROUNDWATER RESOURCES, Eds. J. Bear and Y. Xue, Nanjing University Press, p.383-389, 1991 (English)

[115]Dai, Z. and Hao Q., Study on coupled model of pore and local strong transmission fissure, J. of Coal Geology, (2)1997 (Chinese)

[116]Dai, Z., An optimal allocation model of regional groundwater resources, J. of Coal Geology, (6)1996 (Chinese).

[117] Li, J. G. Yang and Z. Dai, The adjoint equation for phreatic groundwater flow and variational sensitivity analysis, J. of Chinese Coal Society, No. 2, Vol. 20, 1995 (Chinese).

[118] Dai, Z., A conjunctive model of surface water and groundwater, J. of Science and Technology of Site Investigation, (1)1993 (Chinese)

[119] Dai, Z., Optimal design of large-scale pumping tests, J. of Changchun University of Geology, (1)1993 (Chinese).

[120]Dai, Z., The conceptual models of the groundwater flow modeling, J. of Hydrogeology and Engineering Geology, Vol. 19, (2)1992 (Chinese).

[121] Dai, Z. and Li J., Optimal management of multi-aquifer systems, J. of Science and Technology of Site Investigation, (1)1991 (Chinese).

[122] Dai, Z. and Li J., A study of groundwater multi-objective management model in the Jinin-Yanzhou mineral districts, J. of Xian College of Geology, Vol. 13, (2)1991 (Chinese).

[123]Li J. and Z. Dai, A multi-objective management model of groundwater flow, J. of Hydrogeology and Engineering Geology, (2)1990 (Chinese)

会议论文 Publications (Peer-Reviewed) in Conference Proceeding

[1] Dai, Z. Daniel Levitt, and Elizabeth Keating, Estimating Hydrofacies Parameters for a Stratified Aquifer System, at the proceeding of The National Ground Water Association (NGWA) Ground Water Summit, Albuquerque, New Mexico, 5/1-4, 2007.

[2] Dai, Z., A. Wolfsberg, Z. Lu, and P. Reimus, Upscaling flow and transport parameters for heterogeneous fractured rocks, in proceeding of 2007 U.S. EPA/NGWA Fractured Rock Conference, Portland, Maine, September 24-26, 2007.

[3] Dai, Z., A. Wolfsberg, and R. Ritzi, Upscaling matrix diffusion coefficients for fractured rocks, EOS abstract, AGU 2006 Fall Meeting, San Francisco, Dec., 2006.

[4] Dai, Z. and J. Samper, The inverse problem of multi-component reactive solute transport: Application to the Aquia Aquifer in Maryland, Proceedings of the International Groundwater Symposium, Lawrence Berkeley National Lab, Berkeley, p.483-488, 2002.

[5]Ritzi, W., Z. Dai, D. Dominic, and Y. Rubin, Spatial structure of permeability in relation to hierarchical sedimentary architecture in buried-valley aquifers: centimeter to kilometer scales, Proceedings of the International Groundwater Symposium, Lawrence Berkeley National Lab, Berkeley, p.33-41, 2002.

[6]Ritzi, R., Z. Dai, D. Dominic, and Y. Rubin, Spatial structure of permeability in relation to hierarchical sedimentary architecture, Proceedings of the 4th Int. Conference on Calibration and Reliability in Groundwater Modeling, Prague, Czech Republic,362-367, 2002.

[7] Dai, Z. and J. Samper, Inverse problem of water flow and multi-component reactive solute transport: Application to the Delta Aquitard in Spain. In: New Approaches Characterizing Gorundwater Flow, Seiler, K. & S. Wohnlich Eds. 31th Int. IAH Congress, Munich. Balkema Publishers, Lisse, Netherland, p.289-292, 2001.

[8]A. Vazquez, A. Fernandez, J. Samper, L. Montenegro, P. Rivas and Z. Dai, Modelizacion hidrogeoquimica de la arcilla FEBEX, International Workshop on Waste Isolation Research, Barcelona (Spanish), p.183-189, 2001.

[9]Dai, Z., Study on coupled model of pore and local strong transmission fissure, International Conference on Mining Technique, p.117-127, Xian, China, 1996 (English).

[10] Dai, Z. and Li J., An optimal allocation model of regional groundwater resources, 30th International Geological Congress, Beijing, Aug. 1996 (English).

[11] Xiang Y. and Z. Dai, Groundwater resources management in coal mines in western China, International Workshop on Groundwater modeling, Qindao, China, 1996 (English).


在国际学术会议做重要报告 Recent Professional Activities


1.Invited talk 特邀报告of American Geophysical Union (AGU), Annual Meeting, on “CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites”, San Francisco, December, 2015.

2. Invited talk 特邀报告of GHGT-12 on “An integrated framework for optimizing CO2 sequestration and enhanced oil recovery”, Austin, Texas, October, 2014.

3. Invited talk 特邀报告of American Geophysical Union (AGU), Annual Meeting, on “Impact of the leaked CO2 from deep reservoirs on quality of shallow groundwater”, San Francisco, December, 2012.

4. Invited talk 特邀报告of Geological Society of America (GSA), Annual Meeting, on “Uncertainty quantification of aquifer structures with multi-scale heterogeneous features”, Denver, October, 2010.

5. Invited Seminar Speaker特邀讲座 “Identification of aquifer structures with multi-scale heterogeneous features”, Department of Scientific Computing, Florida State University, Tallahassee, October, 2009.

6. Poster presentation in American Geophysical Union (AGU), Annual Meeting, on “Upscaling Reactive Mass Transport for Contaminant Transport in Fractured Rocks”, San Francisco, December, 2009.

7. Speaker of American Geophysical Union (AGU), Annual Meeting, on “Sensitivity Analysis of Transition Probability Models to Aquifer Structure Parameters for Identifying Aquifer Heterogeneity”, San Francisco, December, 2008.

8. Poster presentation in American Geophysical Union (AGU), Annual Meeting, on “Upscaling Sorption Coefficient for Contaminant Transport in Multimodal Mineral Facies”, (Deng, H., Z. Dai, A. Wolfsberg, Z. Lu, and M. Ye ), San Francisco, December, 2008.

9.Speaker of the XVII International Conference on Computational Methods in Water Resources (CMWR 2008), “Modeling Flow and Reactive Solute Transport in Multi-scale Fractured Rock”, San Francisco, July, 2008.

10. Poster presentation in UGTA TIE Meeting on “A Pahute Mesa Pump Test Simulator: A Quick Extraction from the CAU Model for Evaluating Pumping Scenarios”, Las Vegas, NV, May 12, 2008.

11.Poster presentation in LDRD TIE meeting on “Subsurface Transport Parameter Scaling with Multiscale Transition Probability Models”, Los Alamos, NM, September 8, 2008.

12. Harp D. R., Z. Dai, A. V. Wolfsberg, J. A. Vrugt, B. A. Robinson, V. V. Vesselinov (2008), Aquifer structure identification using stochastic inversion, Talk for The XVII International Conference on Computational Methods in Water Resources (CMWR), 2008.

13. Speaker of American Geophysical Union (AGU), Annual Meeting, on “Upscaling transport parameters and processes for heterogeneous fractured rocks”, San Francisco, December, 2007.

14. Invited talk特邀报告 in National Ground Water Association (NGWA) Ground Water Summit on “Estimating Hydrofacies Parameters for a Stratified Aquifer System”, Albuquerque, New Mexico, 5/1-4, 2007.

15. Speaker of Geological Society of America (GSA), Annual Meeting, on “A stepwise inversion of groundwater flow model from multi-scale observation data”, Denver, October, 2007.

16. Speaker of Geological Society of America (GSA), Annual Meeting, on “Scale dependence of flow and transport parameters in fractured rock”, Denver, October, 2007.

17. Poster presentation in EBTAG Meeting on “Coupled inversion of groundwater flow model with pumping test and long-term monitoring data”, Santa Fe, NM, March 8, 2007.

18. Poster presentation in UGTA TIE Meeting on “Reactive Transport Modeling to Support CAU Models of Radionuclide Migration in Fractured Tuffaceous Rock”, Las Vegas, NV, May 8-9, 2007.

19.Speaker of American Geophysical Union (AGU), Annual Meeting, on “Upscaling matrix diffusion coefficients for heterogeneous fractured rocks”, San Francisco, December, 2006.

20. Invited Seminar Speaker, “Identification of geochemical processes by multi-component reactive solute transport modeling”, Department of Geology, University of South Carolina, Columbia, September, 2005.

21.Invited Seminar Speaker, “Modeling multi-scale heterogeneity and aquifer interconnectivity”, Department of Geology and Environmental Engineering, University of South Carolina, Aiken, January, 2005.

22. Organizer and Co-chair of the Topical Sessions of “Modeling Flow and Transport in Chemically and Physically Heterogeneous Media I and II” for Geological Society of America (GSA), Annual Meeting, Denver, November, 2004.

23.Invited Seminar Speaker, “The inverse problem of multi-component reactive solute transport in variably saturated media”, Department of Environmental Engineering, Clemson University, September, 2004.

24. Speaker of Geological Society of America (GSA), Annual Meeting, on “Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems”, Denver, October, 2004.

25. Invited Speaker 特邀报告of Geological Society of America (GSA), Annual Meeting, on “Relating Spatial Correlation of Permeability to Sedimentary Architecture in Outcrop-Analog Studies”, Seattle, October, 2003.

26. Speaker on “The inverse problem of multi-component reactive solute transport: Application to the Aquia aquifer in Maryland”, International Groundwater Symposium, Lawrence Berkeley National Laboratory, Berkeley, 2002.

27.  Colloquium Speaker on “The inverse problem of multi-component reactive solute transport: Formulation and Application”, Department of Geological Science, Wright State University, 2002.

28.Dai, Z., R.W. Ritzi, D.F. Dominic and Y.N. Rubin, Estimating Parameters for Hierarchical Permeability Correlation Models, (Poster), AGU 2002 Fall Meeting, San Francisco, December, 2002.

29. Dai, Z. and J. Samper, Inverse problem of water flow and multi-component reactive solute transport: Application to the Delta Aquitard in Spain. (Talk) In: New Approaches Characterizing Groundwater Flow, Seiler & Wohnlich Ed. XXXI Int. IAH Congress, 2001.

30. Dai, Z. and J. Samper, Inverse problem of water flow and multi-component reactive solute transport, (Poster) AGU 2000 Fall Meeting, San Francisco, December, 2000.


专利成果与技术

专利Patents

1.Patent for “An integrated framework for optimizing CO2 sequestration and enhanced oil recovery”, Los Alamos National Laboratory, IDEA14-00042, 2016.

开发的计算机软件       Software Developed

1. Dai, Z.   and J. Samper, INVERSE-CORE: A Code for solving the inverse problem of   water flow and reactive solute transport, USER’S MANUAL, Version 1.0, University of La Coruña, 343p, December, 2001.

2. Dai, Z. and J. Samper, INVERSE-CORE: A Code for inverse problem of water flow and reactive solute transport, USER’S MANUAL, Version 0, University of La Coruña, 240 p, December, 1999.

3. Dai, Z.,   and R.W. Ritzi, A code for transport modeling in heterogeneous   sediments with multimodal conductivity and hierarchical organization   across scales (with MATLAB), Wright State University, 2003.

4. Dai, Z.,   and R.W. Ritzi, A code for estimating spatial correlation structure  for  permeability in sediments with hierarchical organization, Wright  State  University, 2003.

5. Dai, Z., and R.W. Ritzi, A code for estimating interconnectivity in heterogeneous aquifers with indicator data, Wright State University, 2004.

6. Dai, Z.,   A code for reservoir characterizations with transition   probability-based indicator simulation, sequential Gaussian simulation   and Pilot-point-based random field simulation, Los Alamos National   Laboratory, 2011.

7. Dai, Z.,   A code for uncertainty quantification of groundwater impact of CO2   geological sequestrations and enhanced oil/gas recovery, 2014.

8. Dai, Z., A code for forward and inverse simulations of reactive chemical transport in heterogeneous media, 2019.


上一篇:达拉拉伊

下一篇:郭威